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The terrestrial biosphere is currently a strong carbon (C) sink but
may switch to a source in the 21st century as climate-driven losses
exceed CO2-driven C gains, thereby accelerating global warming.
Although it has long been recognized that tropical climate plays a
critical role in regulating interannual climate variability, the causal
link between changes in temperature and precipitation and terres-
trial processes remains uncertain. Here, we combine atmospheric
mass balance, remote sensing-modeled datasets of vegetation C
uptake, and climate datasets to characterize the temporal variabil-
ity of the terrestrial C sink and determine the dominant climate
drivers of this variability. We show that the interannual variability
of global land C sink has grown by 50–100% over the past 50 y. We
further find that interannual land C sink variability is most strongly
linked to tropical nighttime warming, likely through respiration.
This apparent sensitivity of respiration to nighttime temperatures,
which are projected to increase faster than global average tem-
peratures, suggests that C stored in tropical forests may be vul-
nerable to future warming.

climate change | climate feedback | asymmetrical warming |
carbon budget | inversion model

Terrestrial ecosystems have been a substantial net sink of an-
thropogenic carbon (C) emissions since the 1960s (1–4), but

the terrestrial C sink could switch to a C source in the 21st
century, resulting in a positive C cycle-climate feedback that
would accelerate global surface warming with potentially major
consequences for the biosphere (5–7). The interannual vari-
ability of the terrestrial C sink can help constrain our un-
derstanding of C/climate feedbacks and identify regions and
mechanisms of the terrestrial C cycle that are most sensitive to
climate parameters, shedding light on the future of the sink and
its possible transition to a source (8). Currently, several major
drivers have been shown to be correlated with the interannual
variability of the terrestrial C sink, including (i) tropical tem-
perature, which is tightly coupled to interannual variability in the
atmospheric growth rate (AGR) of CO2 (8, 9); (ii) tropical
drought stress, including major droughts in the Amazon (10–12),
which has been suggested to underlie increasing sensitivity of the
AGR to tropical temperature over the period from 1959–2010
(13); (iii) temperature and precipitation variability in semiarid re-
gions (14, 15); and (iv) average minimum daily (hereafter “night-
time”) temperatures, which studies of several local field sites in the
tropics have found play a major role in interannual productivity
(16–18).
Determining the mechanism underlying the interannual vari-

ability of the terrestrial C sink, including the relative roles of
precipitation vs. temperature stress and their effects on gross
primary productivity (GPP) vs. total respiration (both autotro-
phic and heterotrophic; R), is critical to predict the sink’s future
and to improve Earth system models. Here, we quantify changes

in the interannual variability of the terrestrial C sink over the
past half-century and then statistically evaluate four hypotheses
that the variability of the terrestrial sink is most strongly influ-
enced by (i) tropical mean temperature, (ii) tropical precipita-
tion, (iii) precipitation and temperature in semiarid regions, and
(iv) nighttime tropical temperatures. We combine multiple
simulations from an atmospheric mass balance of the land C
sink [net ecosystem exchange (NEE)] from 1959 to 2010, re-
mote sensing-modeled datasets of vegetation greenness and
GPP from 1982 to 2010, and global gridded climate datasets to
constrain globally the fundamental equation NEE = GPP − R
and the relative sensitivities of each component to temperature
and precipitation. We draw on a combination of model selec-
tion and partial correlation analysis to provide relative likeli-
hood estimates of each driver and to account for covariation
between predictor variables (e.g., tropical mean temperature vs.
nighttime temperature).

Results and Discussion
We calculated a global mass balance (Fig. 1 A–E), such that
changes in the atmosphere (AGR) must be the result of emis-
sions from fossil fuels (EF) and land use (EL) and uptake by land
(NEE) and ocean (SO) from 1959 to 2010. We first estimated
time-varying uncertainties for EF and EL, ocean uptake (SO), and
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the atmospheric C increase. Each of these flux estimates was de-
rived from multiple datasets. The errors and estimates were then
used in a Monte Carlo simulation to generate 4,500 alternative
trajectories of NEE. Then, using a moving window of 20 y and
multiple alternate methods (SI Appendix, Fig. S1), we found that
the variance in the AGR has increased over the period from 1959–
2010 (99% of linear slopes positive; F test between 1959–1984 and
1985–2010; F = 0.5, P = 0.001) (Fig. 1 F and K) and that neither
the emissions fluxes (Fig. 1 L andM) nor the SO flux (Fig. 1N) can
account for this increase in variance. We caution, however, that
the true variability of fossil fuel, land use, and ocean fluxes is likely
underestimated due to data and model limitations.
Thus, we can attribute this increasing variability with high

confidence to C uptake by terrestrial ecosystems (Fig. 1O; 96%
of slopes positive; F test between 1959–1984 and 1985–2010; F =
0.4, P = 0.009), whose interannual variability is widely considered
to be driven by sensitivities to climate, such as El Niño-Southern
Oscillation (ENSO)–mediated shifts in precipitation and tem-
perature patterns (9, 19, 20). Although there is general consen-
sus that interannual variability in the global C cycle is dominated
by terrestrial processes (20, 21), we demonstrate here that this
variability has been increasing over the past five decades. Recently
reported increasing sensitivity of NEE to tropical temperatures
(13) may partially explain the increased variability, although we ex-
plore this hypothesis in more detail below. Follow-up analyses
revealed that this increasing variability was not due to increasing
mean sink (SI Appendix, Fig. S2), increasing coverage of the CO2
observing network (SI Appendix, Fig. S3), or volcanic eruptions
in the 1990s (SI Appendix, Fig. S4). However, variance in NEE
peaked during the 1990s due, in part, to the greater frequency and
intensity of El Niño events in the 1980s and 1990s, which have
subsequently waned in the 2000s (Fig. 1J and SI Appendix, Fig. S4).

Nevertheless, an increase in NEE variance is still observed when
ENSO is removed, albeit much smaller (SI Appendix, Figs. S1 and S4).
Examining the climate drivers of interannual variability using

both model selection and partial correlation analysis, we found
that the interannual variability of terrestrial NEE was most
sensitive (SI Appendix, Figs. S5 and S6) to nighttime temperature
anomalies averaged over the terrestrial tropics (Tmin-Tropics)
(R2 = 0.31, P < 0.0001; Fig. 2). Comparing models’ relative like-
lihood with Akaike’s information criterion (AIC), tropical night-
time temperatures were fourfold to fivefold more likely to explain
interannual NEE variability than were tropical mean (0.25 relative
likelihood) or tropical maximum (0.22 relative likelihood) tem-
perature, and more than 100-fold more likely than the other cli-
mate drivers tested (SI Appendix, Fig. S6). When using both
forward and backward stepwise model selection to allow for
models with up to 12 independent variables, the model with only
Tmin-Tropics and lagged semiarid precipitation was selected as
the most parsimonious (R2 = 0.47, P < 0.0001), with coefficients
indicating a much stronger role of Tmin-Tropics than of semiarid
precipitation (SI Appendix, Table S1). Partial correlation analyses
produced similar results to model selection (SI Appendix, Fig. S5),
and all results were robust regardless of the SO estimates used (SI
Appendix, Table S2). Moreover, the sensitivity of the terrestrial
sink to tropical nighttime temperature has increased over time (SI
Appendix, Fig. S5), indicating that nighttime temperatures are
most likely driving the previously reported correlations between
the AGR and tropical temperature (13). Spatially averaged trop-
ical precipitation was not significantly correlated with NEE using
either Pearson correlation coefficients (r = 0.19, P = 0.18) or
partial correlation coefficients accounting for other correlated
variables (r = 0.11, P = 0.76). This lack of correlation indicates that
tropical moisture availability alone does not explain interannual
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Fig. 1. Increasing variance in atmospheric growth rate of CO2 is driven by increasing variance of the terrestrial C sink from 1959 to 2010. Annual components
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variation in NEE, although temperature and precipitation interac-
tions may still be important.
Focusing on tropical temperatures, we explicitly compared the

role of tropical maximum vs. nighttime tropical temperatures
(Fig. 3 A and B). When removing the effect of nighttime tropical
temperatures through partial regression, the partial regression
relationship between tropical maximum temperatures and
global NEE is insignificant (R2 = 0.00, P = 0.68; Fig. 3A). When
removing the effect of tropical maximum temperatures, however,
the partial regression relationship between nighttime tropical
temperatures and global NEE is still significant (R2 = 0.8, P =
0.03; Fig. 3B). Thus, hotter tropical nighttime temperatures are
associated with lower net terrestrial C uptake.
What ecological processes might be driving this apparent re-

lationship between nighttime temperatures and net terrestrial C
uptake? Satellite-driven model estimates of GPP have many
limitations but may help provide insight into ecological processes
underlying the observed NEE variability. Thus, we combined our
inversion-based NEE estimates with satellite-derived GPP from
1982 to 2010 in an attempt to attribute changes in NEE to
changes in C uptake (i.e., GPP) and changes in C loss (i.e., R).
We found that global GPP anomaly was uncorrelated with trop-
ical nighttime temperature anomalies (R2 = 0.00, P = 0.95; Fig.
3C). In contrast, global R was significantly related to tropical
nighttime temperature anomalies (R2 = 0.17, P = 0.02; Fig. 3D).
Consistent with recent findings, our results show that the

variance in GPP has been increasing in arid ecosystems (15) (SI
Appendix, Fig. S7). However, we find decreasing variance in GPP
across all other climate zones, resulting in decreasing variance in
GPP at the global scale (SI Appendix, Fig. S7). Decreasing var-
iance in GPP provides ancillary evidence that R is driving in-
creasing variance in NEE. These findings are in contrast to
recent work that suggested increasing variance of GPP, partic-
ularly in semiarid ecosystems, is the main driver of observed var-
iance in NEE (15). Differences in the magnitude and direction of
variance in satellite vegetation indices may explain this discrep-
ancy and should be the focus of future research (SI Appendix).
The GPP remote-sensing algorithm has known limitations (22).
Although it has reasonable skill in capturing interannual vari-
ability in semiarid and evergreen broadleaf tropical forest bi-
omes (23) central to our analyses here, it has difficulties in
capturing interannual variability in many biomes and the re-
quired climatic data inputs could drive observed trends. Thus, we
tested the robustness of our results in two ways. First, we verified
that all trends in GPP were apparent in the raw satellite data
[fraction of photosynthetically active radiation (FPAR); SI Ap-
pendix, Fig. S7]. Second, we determined that the trends were
robust to the full uncertainty in climate inputs to GPP (SI Ap-
pendix, Fig. S7). Model selection using the AIC revealed that

tropical nighttime temperatures were the only significant variable
in explaining interannual patterns in R (SI Appendix, Fig. S8 and
Table S3). Thus, the correlation between respiration and night-
time tropical temperatures was found to be stronger than mean
(relative likelihood of 0.45 compared with the nighttime temper-
ature model) or maximum (relative likelihood of 0.39) tropical
temperatures, although these differences are less robust than the
NEE model differentiation (black lines in SI Appendix, Fig. S6).
Although high tropical daytime temperatures may sometimes

reduce photosynthesis rates, the greater temperature sensitivity
of the global C sink is expected to act through respiration (24).
Furthermore, nighttime warming patterns will differentially af-
fect respiration more than photosynthesis, thereby reducing C
uptake (25, 26). Nighttime temperatures have risen faster than
daytime temperatures globally and in the tropics (SI Appendix, Fig.
S9). Long-term measurements from old-growth tropical forests in
Costa Rica show that nighttime temperatures are a major factor
determining interannual differences in aboveground productivity,
explaining 73% of the interannual variance in tree growth when
combined with dry season vapor pressure deficit (16, 17). Previous
analyses of nighttime warming at a global scale have only con-
sidered the sensitivity of C uptake (i.e., GPP) (26), whereas we
consider both C uptake and loss here. Changing disturbance re-
gimes, particularly fire, may also play a role. We found that fire
emissions are only weakly associated with interannual NEE vari-
ability (SI Appendix, Figs. S10 and S11), but limitations in long-
term disturbance and fire data prevent a robust analysis of how
they may be affecting variability in the terrestrial C cycle.
In conclusion, we have shown that the variance in the AGR has

increased from 1959 to 2010 due to increased interannual fluctu-
ations in net terrestrial C uptake. Tropical nighttime temperatures
are the strongest statistical driver of this observed increase in in-
terannual variability of net terrestrial C uptake and total respira-
tion. The central role of elevated nighttime temperatures confirms
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the global importance of a mechanism previously observed only
in a local field study (16, 17) and may reduce the terrestrial C sink in
light of nighttime warming projections (25, 27) because C gains in
tropical ecosystems may be offset by greater respiratory losses as a
result of nighttime warming. Respiration-driven losses in forest C
constitute one major scenario through which the terrestrial C sink
could switch to a source. Because tropical forests account for 33%
of the annual primary productivity of the terrestrial biosphere (28)
and are currently a significant C sink (excluding ELs) (4), the C
balance of tropical forests is of heightened concern. Furthermore,
because C residence times in tropical forests are relatively low (13),
these forests could also respond relatively rapidly to directional
changes, including warming nighttime temperatures.
Although considerable research has focused on the tempera-

ture sensitivity of the high-latitude C balance to warming (29),
our results highlight that tropical C dynamics are also likely
sensitive to warming. If respiratory losses of C eclipse current C
gains due to CO2 fertilization and secondary regrowth from land
use (30), forest loss could undermine efforts to offset emissions
through reducing emissions from deforestation and degradation
policies and lead to a strong C/climate feedback. Our results
suggest that the previously identified emergent relationship be-
tween temperature and the AGR is most likely due to respiration
losses; thus, respiratory processes should be prioritized in the
improvement of Earth system models and their future climate
predictions. In addition, establishment of long time series CO2
measurements at sufficient spatial density in tropical regions (4)
and additional constraints on GPP measurements through solar-
induced chlorophyll fluorescence (31) would greatly reduce un-
certainties in interannual variability of regional and global C
budgets. Increased understanding of the drivers of mean and
interannual variability in terrestrial C uptake can ultimately help
identify the causes and magnitudes of C cycle feedbacks to an-
thropogenic climate change in the 21st century.

Methods
C Cycle Inversion. We constructed an annual global C budget via standard
methods (1, 32) of mass balance where anthropogenic EF and EL emission
fluxes to the atmosphere are in balance with the atmospheric growth rate
AGR and uptake of sinks in the ocean (SO) and land (NEE):

EF + EL =  AGR+ SO +NEE. [1]

As the least well-constrained component of the global C budget, the land C
sink is calculated as a residual of the other terms. The interannual variability in
this inversion-calculated residual lines up relatively well with the interannual
variability from process-based dynamic global vegetation models (33).

The AGR was determined using measurements of atmospheric CO2 con-
centrations from the Global Greenhouse Gas Network (data source: www.
esrl.noaa.gov/gmd/ccgg/). Following standard C cycle inversion methods, we
calculated the annual AGR as the average of a year’s December and January
concentrations minus the average December and January concentrations
from the previous year, converting concentrations to mass [petagrams of
C (PgC)] using the molar mass conversion factor 2.124 PgC·ppm−1. This
standard method assumes that CO2 in the atmosphere is relatively well
mixed on time scales longer than 1 y, although we considered a temporal
autocorrelation of error in our propagation of uncertainty in calculating the
AGR (discussed below). December/January concentrations are commonly
used because they accurately capture annual atmospheric growth rate (r =
0.93, P < 0.0001; SI Appendix, Fig. S12), whereas other months can be
strongly influenced by widely documented changes in the seasonality of
atmospheric CO2 concentrations (2), which are likely a signal of agricultural
productivity and not necessarily the terrestrial C sink (34, 35). Because
measurement accuracy and precision are quite high for CO2 concentrations
(36), the majority of the uncertainty in calculating the annual AGR derives
from spatial heterogeneities in the uneven sampling network (37).

To assess uncertainty in the AGR, we performed 100 bootstrap simulations
of the AGR from the global sampling network. We resampled with re-
placement of 40 sites from the marine boundary layer to create each
bootstrap simulation, with the only constraint being that at least one site
must come from each of the North Atlantic, North Pacific, Arctic, Antarctic,
and tropics regions. To account for the documented negative interannual
autocorrelation in errors in the AGR (37), we applied autocorrelated noise

equivalent to the autocorrelated uncertainty (i.e., same SD, same autocor-
relation coefficients) observed across the 100 marine boundary layer sam-
pling sites from 1980 to 2010 to the bootstrapped simulations from 1959 to
1979. This method yielded 100 bootstrapped simulations that should rea-
sonably account for spatial and temporal uncertainty in the calculation of
the AGR from the global observing network over time. To ensure that the
increasing coverage of the observing network was not driving the rising
interannual variability, we verified that the trends in variability were also
evident in the AGR of the two longest measurement sites: Mauna Loa (SI
Appendix, Fig. S3) and the South Pole (not shown).

EF were calculated from three independent global inventory datasets:
British Petroleum, the Carbon Dioxide Information and Analysis Center, and
the Emission Database for Global Atmospheric Research [data available at the
Global Carbon Project (GCP): www.globalcarbonproject.org/carbonbudget/].
These inventories use energy consumption statistics to calculate emissions
to the atmosphere from fossil fuel combustion and cement production.
Although errors in these inventories are generally thought to be relatively
small, EF constitute the largest flux in the C budget; thus, accounting for
potential uncertainty and errors is critical to evaluating and constraining
the global C cycle (38). The datasets differ in their treatment of international
transport, gas flaring, cement production, and other areas; accounting
practices of different institutions and countries provide an additional
component of uncertainty (39).

To account for this uncertainty, we performed 100 bootstrap simulations per
inventory. Although the true value of spatial errors across countries is largely
unknown, there is general consensus that errors are likely smaller in Organi-
zation for Economic Cooperation and Development (OECD) nations than
in non-OECD nations (39). We account for spatial uncertainty and errors in
reporting practices by assigning a 5% potential error in emissions from OECD
nations and a 10% potential error in emissions from non-OECD nations. Similar
to the AGR, errors in EF are expected to exhibit positive temporal autocorre-
lation (i.e., erroneously high reported emissions will remain erroneously high
until that error is spotted and then retroactively corrected for all previous
years) (39). Thus, we added temporally autocorrelated random noise with an
AR1 coefficient of 0.95 to our bootstrap simulations. This approach gives a
persistence of autocorrelated errors of around 20 y in simulations.

We used three estimates of EL: a bookkeeping method based on defores-
tation patterns and biomass data (40) and two vegetation model-based esti-
mates [Land surface Processes and eXchanges model from the University of
Bern (LPX-Bern) (41) and Integrated Science Assessment Model (ISAM) (42)]
(data available at www.globalcarbonproject.org/carbonbudget/). ELs contain
perhaps the largest uncertainty of any estimate in our analysis because they
include a large number of poorly constrained processes, different combinations
of which are included in each estimate. The standard bookkeeping method is
considered a benchmark product and includes the flux to the atmosphere of
clearing of primary forest and conversion to agriculture based on deforestation
statistics, satellite estimates of deforestation, and biomass maps of deforested
areas (40). The LPX-Bern model-based estimate is based on historical land-use
maps and also includes the abandonment of land and regrowth of secondary
forest (41). The ISAM model-based estimate includes historical land use and
environmental responses such as nitrogen cycling, which influences secondary
growth and uptake (42). Although other model-based datasets of EL exist, they
rely on similar boundary conditions of historical land-use change maps; thus, we
believe these three datasets likely encompass the entire range and uncertainty
of CO2 emissions estimates for scenarios of land-use and land-cover change.

To account for uncertainty in EL, we performed 100 bootstrap simulations
for each of the EL datasets, using uncertainty provided by the GCP. Similar to
EF, positive autocorrelation of error is expected in EL because the input data
used to derive some components of EL (e.g., deforestation statistics from the
United Nations Food and Agriculture Organization) are released every 5 y.
Thus, we used the same autocorrelated noise approach as in EF above to
account for this known autocorrelation in the bootstrap simulations.

Ocean C uptake (SO) was determined using two independent methods with
differing degrees of observational constraints. First, we used a data assimilation
method where annual SO in an oceanic pulse response model was constrained
with the oceanic inventory of anthropogenic CO2 from the 1990s (43), historical
fluxes from 1980 to 2009 estimated from surface pCO2 measurements, and the
historical atmospheric CO2 concentration (44). The method relies on Markov
chain Monte Carlo sampling of the model parameter space, and we took 1,000
samples from theMarkov chain as samples of the SO under uncertainty (45). The
second method used the multimodel average of six process-based atmosphere-
ocean general circulation models (AOGCMs) contained in the GCP data archive
(data available at www.globalcarbonproject.org/carbonbudget/), which have
been constrained to match the 1990–1999 observation-driven uptake esti-
mates of 2.2 PgC·y−1 (33). The AOGCMs we used were Nucleus for European
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Modelling of the Ocean (NEMO-PlankTOMS) (46), Laboratoire des Sciences
du Climat et de l’Environnement (LSCE) (47), Community Climate System
Model - Biogeochemical Elemental Cycling (CCSM-BEC) (48), Model for
Interdisciplinary Research On Climate - HAMburg Ocean Carbon Cycle
(MICOM-HAMOCC) (49), Max Plank Institute Ocean Model - HAMburg
Ocean Carbon Cycle (MPIOM-HAMOCC) (50), and Princeton (51).

To account for uncertainty in SO in the GCPmodels, we used the published 1σ
uncertainty (33) of 0.5 PgC·y−1 to construct 1,000 bootstrap simulations around
the model mean. As with the emissions fluxes, autocorrelation of uncertainty is
expected in ocean fluxes; we thus followed the same method as above, with an
autocorrelation coefficient of 0.9. The data assimilation technique used for
constraining the pulse response model generates estimates of the autocorre-
lation coefficient and total error from the residuals with the ocean flux history.
We constructed bootstrapped noise for the data-constrained SO with an esti-
mated autocorrelation coefficient of 0.29 and total error of 0.51 PgC·y−1, fol-
lowing the assumption that the residuals from the ocean flux time series
represented short-term variability not resolved by the pulse response model.

To calculate the residual land C sink with a full accounting for uncertainty
through the global C budget, we used a Monte Carlo approach to construct
a set of emissions simulations based on a factorial combination of the three
EF and three EL datasets (3 × 3 = 9 dataset combinations × 500 runs each =
4,500 simulations). We then subtracted the 100 simulations of the AGR to
generate the simulations of the net C sink (ocean + land). Finally, to con-
strain the residual land sink, we constructed two datasets of 4,500 simulations
each by subtracting the estimated ocean C uptake (random subsampling with
replacement of the 1,000 runs) from each SO dataset. For all subsequent
analyses, we analyzed these two land C sink datasets separately, although all
analyses were robust to dataset choice (discussed below).

Climate, Volcanic, and Solar Radiation Data. We downloaded global average
and gridded climate datasets to assess the sensitivity of the land C sink and its
interannual variability to climate variables between 1959 and 2010. We ac-
quired gridded mean annual temperature data from the Hadley Center’s
Climatic Research Unit (HadCRUT4) (52), the National Aeronautics and Space
Administration’s (NASA) Goddard Institute for Space Studies (53), and the
National Oceanic and Atmospheric Administration’s (NOAA) National Cli-
matic Data Center (54). We acquired gridded annual precipitation data from
the NOAA’s Global Precipitation Climatology Center (55). We acquired gridded
monthly mean maximum and monthly mean minimum (nighttime) tempera-
tures from the Hadley Center’s Climatic Research Unit Time Series (CRU TS
3.21) (56). From each dataset, we extracted and calculated the annual global
average and zonal averages for the tropics (25°S to 25°N), Northern extra-
tropics (25.5°N to 90°N), and boxes covering the semiarid regions presented by
Poulter et al. (14) (three boxes: South America: 50°S 80°W to 20°S 40°W,
Southern Africa: 35°S 10°E to 10°S 40°E, and Australia: 40°S 115°E to 10°S
155°E). We calculated the 1-y lags from the semiarid regions as well, because
lags may be important in these areas (14). We drew volcanic aerosol emissions
from NASA’s Goddard Institute for Space Studies dataset of optical aerosol
thickness at 550 nm (57). Global average solar radiation data were 10.7 cm of
solar flux data, provided by the National Research Council of Canada. Details
about GPP and fire emissions analyses are provided in SI Appendix.

Statistical Analyses. For all analyses except calculation of the coefficient of
variation of the land C sink, all variables were first detrended with a linear
trend. To analyze the change in variability of each component of the C cycle,we
used a 20-y moving window across all Monte Carlo simulations of each flux
(discussed above) and calculated the variance of each simulation in each
window. We plotted the trajectory of each simulation’s variance trend and
calculated the percentage of these linear slopes that were positive (as assessed
with ordinary least squares regression) and the statistical significance of the
mean simulation with ordinary least squares regression. For the land C sink
(NEE), we performed this analysis on both datasets (one estimated using the
GCP biogeochemistry ocean models and the other estimated using the data
assimilation-constrained SO). The increase in NEE variance was robust across
both datasets (SI Appendix, Fig. S13). We repeated this analysis with differing
window lengths ranging from 15 to 25 y and found the increase in NEE var-
iability to be robust to window length (95–97% of slopes positive in all win-
dow lengths). We further validated the robustness of the increase in variance
by using a Fisher test that compares the variance of two groups. We per-
formed this test on the first and last 20 y and 25 y of the record and found that
the variances were significant (20-y windows: F = 0.4, P = 0.03; 25-y windows:
F = 0.4, P = 0.02). We performed the same moving window analyses on GPP and
FPAR estimated fromModerate Resolution Imaging Spectroradiometer (MODIS),
using 5- and 10-y moving windows (SI Appendix, Fig. S7). All NEE, GPP, and FPAR
variables met the assumptions of normality.

To test the robustness of this increase in variance in NEE to method and
volcanic signals, we used wavelet transformations on the mean detrended NEE
across the Monte Carlo simulations and the residuals of mean detrended NEE
after regressing against volcanic aerosol in the current year and a 1-y lag.
Similar to a fast Fourier transform, a wavelet transform decomposes a time
series into intensity at each frequency, centered around each year (58). We
used a Morlet wavelet and a Mexican hat wavelet, which provide better res-
olution in the frequency and time domains, respectively (58). We found that
the variability of NEE increased in all cases, shown as hotter colors (higher
intensity) over time in the wavelet power spectra (SI Appendix, Fig. S1).

To test whether increasing variability was a product of increasing mean, we
repeated the moving window analyses detailed above but, instead, did not
detrend the time series of NEE and calculated the coefficient of variation (de-
fined as SD/mean) in each window. We found that the coefficient of variation
also increased over time (SI Appendix, Fig. S2), indicating that the SD (and thus
variance) increased faster than themean. We further found via partial regression
that the variance of NEE increased when removing the volcanic signal and ENSO
signals (SI Appendix, Fig. S4), indicating that the Pinatubo eruption and strong
1997/1998 ENSO event were not the sole drivers of the increased variance.

To assess the sensitivity of interannual variation in NEE to climate, we used
two independent techniques to determine themost important variables among
a suite of highly correlated explanatory climate variables. We first used model
selection based on the AIC, considered a standard technique for determining
the most parsimonious model for a statistical relationship (59–61). All variables
were first detrended and converted to Z-scores, with the volcanic signal re-
moved from NEE via partial regression. These climate variables met the as-
sumptions of normality. For each of the 4,500 simulations of NEE, we calculated
the AIC of single linear regressions of NEE vs. each of 12 climate variables.
Climate variables included in stepwise model selection were as follows: Tmin-
Tropics (nighttime); average tropical temperatures (Tave-Tropics); maximum
tropical temperatures (Tmax-Tropics); global average temperature (Tave-
Globe); average temperature of latitudes >30°N (Tave-North); maximum and
minimum temperatures at those latitudes (Tmax-North and Tmin-North, re-
spectively); precipitation for the globe (Precip-Globe), tropical regions (Precip-
Tropics), and northern extratropics (Precip-North); semiarid regions’ current
year’s temperature (SaT) and 1-y lag (SaT1); and semiarid regions’ current year’s
precipitation (SaP) and 1-y lag (SaP1). Per standard model selection methods,
we then calculated the relative likelihood of each model compared with the
best model (lowest AIC) as Relative LikelihoodModel I = exp[(AICMin −AICModel I)/2].

To determine the most parsimonious model, we then performed stepwise
model selection both “forward” (starting with the null model and adding ex-
planatory variables) and “backward” (starting with the complete model and
removing explanatory variables). To remove covarying variables, we used a
standard model selection technique that involved creating a correlation matrix
between explanatory variables, identifying variables correlated at r > 0.5, and
comparing each independently withNEE. The variable that explainedmore of the
variance in NEE was retained. All stepwise model selection routines culminated
with mean monthly minimum temperatures in the tropics (Tmin-Tropics) and 1-y
lagged semiarid precipitation as the most parsimonious model. We performed
model selection with mean NEE calculated from both SO datasets (GCP models
and data assimilation uptake) and found that the final model was the same in
both cases. We tested all models to ensure that explanatory variables and resid-
uals were normally distributed and met the assumptions of linear regression.

We further tested the robustness of the stepwisemodel selection using partial
correlation analysis. Partial correlation analysis is used to determine the corre-
lations between two given variables (in our case, terrestrial NEE and a given
climate variable) while accounting for other correlated variables. It has been
used widely to examine the sensitivity of C cycle fluxes to climate parameters (9,
26, 28). All variables were first detrended and converted to Z-scores. We per-
formed partial regressions between each pair of variables while accounting for
all other variables. We performed partial correlations with NEE calculated from
both SO datasets (i.e., GCP models, data assimilation method) and found that
the partial correlations exhibited the same qualitative pattern; thus, we only
display the GCP model uptake-based land NEE in SI Appendix, Fig. S5. We
further examined the strength of the partial correlation of NEE and tropical
nighttime temperatures over time, accounting for mean monthly maximum
tropical temperature, solar radiation, and tropical precipitation in one model
and global mean annual temperature, solar radiation, and tropical precipitation
in a second model, in moving 20-y windows. We performed this analysis on the
4,500-member ensemble of NEE estimated from the GCP models of SO.

All statistics were performed in the R computing environment (58). Wavelet
analysis was performed using the “biwavelet” package (62). Climate variables
in NetCDF were imported and calculated using the “RnetCDF” package (63).
Stepwise model selection was performed using the “MASS” package (64).
Partial correlations were performed using the “ggm” package (65).
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